翻訳と辞書 |
Legendre's equation : ウィキペディア英語版 | Legendre's equation
In mathematics, Legendre's equation is the Diophantine equation : The equation is named for Adrien Marie Legendre who proved in 1785 that it is solvable in integers ''x'', ''y'', ''z'', not all zero, if and only if −''bc'', −''ca'' and −''ab'' are quadratic residues modulo ''a'', ''b'' and ''c'', respectively, where ''a'', ''b'', ''c'' are nonzero, square-free, pairwise relatively prime integers, not all positive or all negative . ==References==
* L. E. Dickson, ''History of the Theory of Numbers. Vol.II: Diophantine Analysis'', Chelsea Publishing, 1971, ISBN 0-8284-0086-5. Chap.XIII, p. 422. * J.E. Cremona and D. Rusin, "Efficient solution of rational conics", Math. Comp., 72 (2003) pp. 1417-1441. ()
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Legendre's equation」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|